
Doubly Linked List

 Doubly Linked List is a variation of Linked list in which navigation is possible in both ways, either

forward and backward easily as compared to Single Linked List. Following are the important terms to

understand the concept of doubly linked list.

• Data− Each node of a linked list can store a data called an element.

• Next− Each link of a linked list contains a link to the next link called Next.

• Prev − Each link of a linked list contains a link to the previous link called Prev.

• LinkedList − A Linked List contains the connection link to the first link called First and to the

last link called Last.

Doubly Linked List Representation :

As per the above illustration, following are the important points to be considered.

• Doubly Linked List contains a link element called first and last.

• Each node carries a data field(s) and two link fields called next and prev.

• Each node is linked with its next link using its next link.

• Each node is linked with its previous link using its previous link.

• The last node carries a link as null to mark the end of the list.

Basic Operations :

Following are the basic operations supported by a doubly linked list.

• Insertion − Adds an element at the beginning of the list.

• Deletion − Deletes an element at the beginning of the list.

• Insert Last − Adds an element at the end of the list.

• Delete Last − Deletes an element from the end of the list.

• Insert After − Adds an element after an item of the list.

• Delete − Deletes an element from the list using the key.

• Display forward − Displays the complete list in a forward manner.

• Display backward − Displays the complete list in a backward manner.

Insertion Operation :

The following code demonstrates the insertion operation at the beginning of a doubly linked list.

//insert node at the first location

void insertFirst(int key, int data)

{

 //create a node

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty())

 {

 last = link; //make it the last link

 }

else

 {

 head->prev = link; //update first prev link

 }

 link->next = head; //point it to old first link

 head = link; //point first to new first link

}

Deletion Operation :

Following code demonstrates the deletion operation at the beginning of a doubly linked list.

//delete first item

struct node* deleteFirst()

{

 struct node *tempLink = head; //save reference to first link

 if(head->next == NULL) //if only one link

 {

 last = NULL;

 }

 else

 {

 head->next->prev = NULL;

 }

 head = head->next;

 return tempLink; //return the deleted link

 }

Insertion at the End of list :

Following code demonstrates the insertion operation at the last position of a doubly linked list.

//insert node at the last location

void insertLast(int key, int data)

 {

 //create a node

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty())

 {

 last = link; //make it the last link

 }

 else

 {

 last->next = link; //make link a new last link

 link->prev = last; //mark old last node as prev of new link

 }

 last = link; //mark old last node as prev of new link

}

Circular Linked List

 Circular Linked List is a variation of Linked list in which the first element points to the last element

and the last element points to the first element. Both Singly Linked List and Doubly Linked List can be

made into a circular linked list.

Singly Linked List as Circular :

In singly linked list, the next pointer of the last node points to the first node.

Doubly Linked List as Circular :

In doubly linked list, the next pointer of the last node points to the first node and the previous pointer of

the first node points to the last node making the circular in both directions.

As per the above illustration, following are the important points to be considered.

• The last link's next points to the first link of the list in both cases of singly as well as doubly

linked list.

• The first link's previous points to the last of the list in case of doubly linked list.

Basic Operations :

Following are the important operations supported by a circular list.

• insert − Inserts an element at the start of the list.

• delete − Deletes an element from the start of the list.

• display − Displays the list.

Insertion Operation :

The following algorithm demonstrates the insertion operation in a circular linked list based on single

linked list.

insertFirst(data):

Begin

 create a new node

 node -> data := data

 if the list is empty, then

 head := node

 next of node = head

 else

 temp := head

 while next of temp is not head, do

 temp := next of temp

 done

 next of node := head

 next of temp := node

 head := node

 end if

End

Deletion Operation :

The following code demonstrates the deletion operation in a circular linked list based on single linked list.

deleteFirst():

Begin

 if head is null, then

 it is Underflow and return

 else if next of head = head, then

 head := null

 deallocate head

 else

 ptr := head

 while next of ptr is not head, do

 ptr := next of ptr

 next of ptr = next of head

 deallocate head

 head := next of ptr

 end if

End

Display List :

The following code demonstrates the display list operation in a circular linked list.

display():

Begin

 if head is null, then

 Nothing to print and return

 else

 ptr := head

 while next of ptr is not head, do

 display data of ptr

 ptr := next of ptr

 display data of ptr

 end if

End

	Doubly Linked List
	Doubly Linked List Representation :
	Basic Operations :
	Insertion Operation :
	Deletion Operation :
	Insertion at the End of list :

	Circular Linked List
	Singly Linked List as Circular :
	Doubly Linked List as Circular :
	Basic Operations :
	Insertion Operation :
	Deletion Operation :
	Display List :

